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Abstract: The “Adaptive Slotine-Li Robot Controller (ASLRC)” of the nineties of the past century was designed
by a sophisticated process based on the use of Lyapunov’s 2nd method. In the possession of the exact analytical
form of the system model it generally can achieve global asymptotic stability by learning the system’s exact dy-
namic parameters. However, it is not robust to friction effects and unknown external disturbances. In contrast to
that the adaptive controllers designed by the use of “Robust Fixed Point Transformations (RFPT)” are only locally
stable, work on the mathematical basis of Banach’s Fixed Point Theorem, cannot learn the system’s analytical
model parameters but they are very robust to modeling deficiencies (e.g. abandoned friction effects) and unknown
external forces. In this paper it is shown that by evading the use of Lyapunov function in the adaptive control
design an appropriate modification of the ASLRC can be elaborated that is able to properly learn the exact model
parameters if external disturbances are missing. It can be combined with the RFPT-based controller that makes it
robust to formal modeling inconsistencies and external forces, though in this case it cannot learn the appropriate
system parameters. It is also shown that the symbiosis with the RFPT-based method does not disturb the parameter
identification process if modeling inconsistencies and disturbances are absent.

Key–Words: Adaptive control; Lyapunov function, Lyapunov’s direct method, Slotine-Li Adaptive Robot Con-
troller; Robust Fixed Point Transformation; Global stability; Asymptotic Stability; Robustness.

1 Introduction

On the basis of the translations of A.M. Lyapunov’s
PhD Thesis of 1892 [1], from the sixties of the past
century [2] Lyapunov’s “direct” method became the
prevailing mathematical design tool for constructing
stable controllers for strongly nonlinear systems in
which the motion is not limited to the close vicinity
of some “working point”. Industrial robots of open
kinematic chains are excellent paradigms to represent
such systems: as the various links of e.g. a PUMA
robot are rotated by considerable angles the dynam-
ics of the whole system suffers very drastic varia-
tion so such systems cannot be “linearized” for the
aims of controller design. As early examples from
the nineties of the past century the “Adaptive Inverse
Dynamics Controller (AIDSC)” and the ASLRC con-
trollers can be mentioned [3]. Both were designed
by the use of some Lyapunov functions. The latter
one utilized more subtle analytical details therefore it
allowed faster parameter tuning by avoiding the use

of the inverse of a tuned inertia matrix that generally
may become singular or ill-conditioned. It also con-
tained less number of arbitrary adaptive parameters as
the AIDSC. Both methods were critically analyzed in
details in [4]. In [5] two modifications were intro-
duced to improve these classical methods: a) in the 1st
step the feedback term was modified by the inclusion
of integrated tracking error terms but essentially the
same Lyapunov function and parameter tuning tech-
niques was used for proving global asymptotic sta-
bility of the controlled system; b) following that the
parameter tuning processes were modified on the ba-
sis of simple geometric interpretation, in this manner
the use of the Lyapunov function in the design was
evaded. In connection with this latter step it was rec-
ognized that formally insisting on the use of a Lya-
punov function means very significant handicap as far
as the possible parameter tuning process is concerned,
and it was shown that reasonable tuning rules can be
deduced without the use of any Lyapunov function.
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The difficulties related to the Lyapunov function
based techniques inspired the research for alternative
adaptive control solutions in which instead of the use
of any analytical model and related parameter tuning a
fixed approximate system model was used in the cal-
culation of the force to be exerted, and the result of
this calculation was adaptively deformed by the RFPT
to achieve precise trajectory tracking. The essence of
the idea was outlined in [6] and [5]. In [11] it be-
came clear that this simple method containing only al-
together 3 adaptive parameters can be developed com-
petitive with the Lyapunov function based technique
because an appropriate, model-independent observer
was developed for tuning its one parameter to main-
tain global convergence. In [7] it was shown that the
RFPT-based method can cooperate with a modifica-
tion of the AIDSC that was designed with an evasion
of the Lyapunov function. For this purpose a 1 Degree
of Freedom (DoF) modified version of the van der Pol
Oscillator [10] was utilized. In the present paper our
aim is to show a similar possibility for the ASLRC
controller. For starting point we go back to its modifi-
cation introduced in [5]. For simulation purposes and
illustrations the same paradigm (a cart+beam+hamper
system) will be used here.

2 Cooperation of the Modified Adap-
tive Slotine-Li Controller and the
RFPT-based Design

Let the starting point be the modification of the
ASLRC containing an integrated feedback as used in
[5].

2.1 The Lyapunov Function Based Tuning
The integrated tracking error can be introduced as
ξ(t)

def
=

∫ t
t0

[
qN (ζ)− q(ζ)

]
dζ. If Λ > 0 (constant

symmetric positive definite matrix) an “error metrics”

can be introduced as S(t)
def
=

(
d
dt + Λ

)2
ξ(t). Fur-

thermore, for the feedback the quantity v
def
= q̇N +

2Λξ̇ + Λ2ξ also is practically defined. Evidently
v − q̇ = S.

As it was shown by Slotine and Li, the approxi-
mate model of the robot can be described by the pos-
itive definite symmetric inertia matrix Ĥ(q), the spe-
cial matrix Ĉ(q, q̇), the approximation of the gravi-
tational term ĝ(q), and a positive symmetric matrix
KD, in which variable q denotes the “Generalized co-
ordinates” of the robot. Regarding the definition of
matrix C this method takes into account the fact that

in the Euler-Lagrange equations of motion this matrix
is composed from the inertia matrix:

L
def
= 1

2

∑
ij Hij q̇iq̇j − U(q),

Qk = d
dt

∂L
∂q̇k
− ∂L

∂qk
,

Qk =
∑

j Hkj q̈j +
∑

ji
∂Hkj

∂qi
q̇iq̇j

−1
2

∑
ij

∂Hij

∂qk
q̇iq̇j + ∂U

∂qk
,

(1)

in which the product q̇iq̇j is symmetric in the indices
i, j, therefore only the symmetric part of its coefficient
yields contribution as

Qk =
∑

j Hkj q̈j + ∂U
∂qk

+∑
ji

(
1
2
∂Hkj

∂qi
+ 1

2
∂Hki
∂qj
− 1

2
∂Hij

∂qk

)
q̇iq̇j

Ckj
def
= 1

2

∑
i

(
∂Hkj

∂qi
+ ∂Hki

∂qj
− ∂Hij

∂qk

)
q̇i

(2)

Let the controller exert the generalized force Q
according to (3). An important assumption of the
method is that neither unknown external disturbances
nor other modeling inaccuracies may exist, therefore
the generalized force Q as calculated in the first line
of (3) is related to the motion of the system as given
by its 2nd line:

Q = Ĥ(q)v̇ + Ĉ(q, q̇)v + ĝ(q) +KDS
Q = H(q)q̈ + C(q, q̇)q̇ + g(q) =

= Y (q, q̇, v, v̇)Θ,

(3)

in which the “exact model values” are denoted by
H(q), C(q, q̇), and g(q), and it is also utilized that the
array of the dynamic model parameters Θ can be writ-
ten in a separated form in which Y is exactly known.

The equality of the left hand sides of the equa-
tions in (3) traditionally is utilized as follows. Follow-
ing the elimination of Q from both sides the unknown
quantities (the exact matrices are not known)Hv̇, Cv,
g, and KDS can be subtracted. Since −Hv̇ + q̈ =
−HṠ, and C(−v + q̇) = −CS, it is obtained that

(Ĥ −H)v̇ + (Ĉ − C)v + (ĝ − g) =

−HṠ − CS −KDS = Y (Θ̂−Θ).
(4)

The Lyapunov function is V = 1
2S

TH(q)S + 1
2(Θ−

Θ̂)TΓ(Θ − Θ̂). For guaranteeing negative time-
derivative for the Lyapunov function

V̇ = STHṠ + 1
2S

T ḢS+

(Θ̇− ˙̂
Θ)TΓ(Θ− Θ̂)

(5)

must be made negative. From (4) HṠ can be ex-
pressed and substituted into (5):
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V̇ = ST
(
−Y (Θ̂−Θ)− CS −KDS

)
+

ST 1
2ḢS + (Θ̇− ˙̂

Θ)TΓ(Θ− Θ̂).
(6)

Taking into account that according to (2) 1
2Ḣkj −

Ckj = 1
2

∑
i

(
−∂Hki

∂qj
+

∂Hij

∂qk

)
q̇i is skew symmetric in

the indices (k, j), ST
(
1
2Ḣ − C

)
S = 0, and the the

condition of the stability is

0 > V̇ = −STKDS+[
STY + (Θ̇− ˙̂

Θ)TΓ

]
(Θ− Θ̂).

(7)

Since normally Θ̇ ≡ 0 and KD is positive definite

the appropriate parameter tuning rule can be: ˙̂
Θ

T
=

STY Γ−1. It worths noting that:
◦ since in this approach no matrix inversion happens,

the speed of parameter tuning can be quite high;

◦ the actual value of V̇ is independent of (Θ− Θ̂) and
d
dt(Θ − Θ̂), therefore if the S = 0 state is achieved
the parameter tuning process is stopped even if the
estimation error is not zero, and the consequence of
any instant disturbance that kicks out S from zero is
an immediate decrease in ‖S‖;
◦ this method cannot properly compensate the effects

of unknown external disturbances and friction forces
since in the 1st two lines of (3) the same Q general-
ized force must occur;

◦ further problems arise with the systems for which
the model cannot be separated as a multiplication of
the array of the dynamical parameters and known
functions.

The above statements are trivial and do not re-
quire illustration via simulation. In the next subsec-
tion it will be shown that consistent parameter tuning
can be invented without the use of any Lyapunov func-
tion.

2.2 Modified Parameter Tuning
Let us return to (3) and observe that if the aim is not
the construction of any Lyapunov function the known
terms as Ĥq̈, Ĉq̇ and ĝ can be subtracted from both
sides of the equation that was obtained after the elimi-
nation ofQ. In the result we again obtain the modeling
error multiplied by known quantities at one side, and
known quantities will appear at the other side:

Ĥ(q)(v̇ − q̈) + Ĉ(q, q̇)(v − q̇) +KDS =[
H − Ĥ

]
q̈ +

[
C − Ĉ

]
q̇ + [g − ĝ] =

= Z(q, q̇, q̈)
(
Θ− Θ̂

) (8)

in which Z(q, q̇, q̈) is a known quantity. This is a great
advantage with respect to (4) in which the left hand
side of the 2nd equation is not known since H and
C are unknown. Equation (8) has simple geometric
interpretation that directly can be used for parame-
ter tuning as follows: if exponential decay rate could
be realized for the parameter estimation error the ar-
ray equation d

dt

(
Θ− Θ̂

)
= −α

(
Θ− Θ̂

)
(α > 0)

should be valid. If we multiply both sides of this equa-
tion with a projector determined by a few pairwisely
orthogonal unit vectors as

∑
i e

(i)e(i)
T

the equation∑
i

(
Θ̇i − ˙̂

Θi

)
= −α

∑
i e

(i)
(
Θi − Θ̂i

)
is obtained.

This situation can well be approximated if we use
the Gram-Schmidt algorithm (e.g. [8], [9]) for find-
ing the orthogonal components of the rows of ma-
trix Z in (8). Assuming that the speed of variation
of Z is not too significant, we can apply the tun-
ing rule only for the known components in the form:
d
dt(Θ− Θ̂) = −α

∑
i

z̃(i)z̃(i)
T

‖z̃(i)‖2+ε
(Θ− Θ̂) in which z̃(i)

denotes the transpose of the orthogonalized rows of
matrix Z, and a small ε > 0 evades division by zero
whenever the norm of the appropriate row is too small.
Since the scalar product is a linear operation during
the orthogonalization process the appropriate linear
combinations of the scalar products in the 3rd row of
(8) can be computed.

2.3 Further Modification in the Exerted
Force/Torque Components

It is evident that all the above considerations remain
valid if in the place of Ĥv̇ some different term is writ-
ten in (8). (Obtaining exactly Ṡ was important only
for the construction of a Lyapunov function.) So use-
ful information can be obtained for model parameter
tuning if in the exerted forces this term is replaced by
its iterative variant obtained from the RFPT-base de-
sign as follows:

h := f(rn)− rdn+1, e := h/‖h‖,
B̃ = Bcσ(Ac‖h‖)

rn+1 = (1 + B̃)rn + B̃Kce

(9)

in which σ(x)
def
= x

1+|x| , r
d
n+1

def
= vn+1, rn denotes

the adaptively deformed control signal used instead of
vn control in control cycle n, and f(rn) ≡ q̈n, i.e.
the observed system response in cycle n. It is evi-
dent that if f(rn) = rdn+1 then rn+1 = rn, that is the
solution of the control task (i.e. the appropriate adap-
tive deformation) is the fixed point of the mapping de-
fined in (9). Since the details of the convergence were
discussed in ample literature references in the sequel
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only simulation results will be presented to reveal the
cooperation of the FRPT-based adaptivity and model
parameter tuning.

3 Comparative Simulation Results
For the simulations the same cart+beam+hamper sys-
tem was used as in [4] with the Euler–Lagrange equa-
tions of motion

 (ML2 + θ) θ mLcosq1
θ θ 0

mLcosq1 0 (m+M)


 q̈1
q̈2
q̈3

+

+

 −mgLsinq10
−mLsinq1q̇21

 =

 Q1

Q2

Q3

 .
(10)

in which M = 30 kg and m = 10 kg denote the
masses of the cart and the hamper respectively (the
mass of the beam connecting the hamper to the cart
is neglected), θ = 20 kg · m2 describes the momen-
tum of the hamper referenced to its rotary axle on
which its mass center point is located, L = 2m de-
notes the length of the beam, and g = 10m/s2 in this
case denotes the gravitational acceleration. With the

definition Θ
def
= [mL,mL2 + θ, θ,M + m,mgL]T

matrix Z easily can be constructed. The approximate
model parameters were M̂ = 60 kg and m̂ = 20 kg,
θ̂ = 50 kg · m2, L̂ = 2.5m (in the dynamical cal-
culations), and ĝ = 8m/s2. These settings corre-
spond to Θ̂ini = [50, 175, 50, 80, 400]T , and Θ =
[20, 60, 20, 40, 200]T .

3.1 Cooperation in the Lack of External Dis-
turbances

In the 1st step it will be illustrated that the RFPT-based
design can well coexist with the dynamical parame-
ter tuning in the absence of disturbances. The control
parameters were as follows: Λ = 10/s, α = 1/s,
KD = 100/s, Kc = −107, Bc = 1, and Ac = 10−8,
the cycle time and the time-resolution of the numeri-
cal (Euler-type) integration was δt = 10−4 s. Accord-
ing to Fig. 1 the application of the RFPT considerably
improved the tracking precision. As it is displayed by
Fig. 2 the initially strongly over-estimated parameters
are tuned in similar manner.

3.2 Cooperation under the Effect of a LuGre
Friction at Axle 3

For disturbances a LuGre-type friction was introduced
at axle 3 as it was done in [4]. This model cannot be

Figure 1: The tracking error in the lack of unknown
disturbances: with modified tuning without RFPT
(upper chart), and modified tuning with RFPT (lower
chart)[q1: solid, q2: dashed, q3: dense dash lines]

Figure 2: Tuning of the adaptive parameters in the
lack of unknown disturbances: with modified tuning
without RFPT (upper chart), and modified tuning with
RFPT (lower chart)[Θ1: solid, Θ2: dashed, Θ3: dense
dash, Θ4: dash-dot, and Θ5: dash-dot-dot lines]

taken into account in a “separated form” and also con-
tains an internal dynamic variable that is not modeled
by our controller (it is used only in the simulations.
Figure 3 reveals that the application of the RFPT again
considerably improved the tracking error, with the ex-
ception of the initial “transient” section.
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Figure 3: The tracking error under unknown dis-
turbances: with modified tuning without RFPT (up-
per chart), and modified tuning with RFPT (lower
chart)[q1: solid, q2: dashed, q3: dense dash lines]

Figure 4 reveals that similar “abnormal” tuning-
discrepancies occur in both cases, but the RFPT-based
method well compensates the simultaneous conse-
quences of the disturbances and improper parameter
tuning.

Figure 4: Tuning of the adaptive parameters under
unknown disturbances: with modified tuning without
RFPT (upper chart), and modified tuning with RFPT
(lower chart)[Θ1: solid, Θ2: dashed, Θ3: dense dash,
Θ4: dash-dot, and Θ5: dash-dot-dot lines]

Figure 5: The phase trajectories under unknown dis-
turbances: with modified tuning without RFPT (up-
per chart), and modified tuning with RFPT (lower
chart)[q1: solid, q2: dashed, q3: dense dash lines]

In this case important details are revealed by the phase
trajectories (Fig. 5). Without using the RFPT-based
adaptation more even and greater tracking errors are
present. The RFPT reduces these errors in long sec-
tions, while in the problematic sections it generates
significant changes in the phase space. Certain de-
tails can be also observed in the charts of trajectory
tracking (Fig. 6). In Fig. 7 the operation of the RFPT-
based method is illustrated: the realized (simulated)
2nd time-derivative is in the close vicinity of the kine-
matically computed “desired” value, i.e. the primary
design intent, i.e. the realization of a kinemtically
prescribed tracking error relaxation is successfully de-
mosntrated.

4 Conclusions
In this paper the successful co-operation and symbio-
sis of a modified traditional adaptive controller, the
“Slotine-Li Adaptive Robot Controller” and the “Ro-
bust Fixed Point Transformations”-based design was
demonstrated. s a result, the combined controller can
correctly learn the parameters of the controlled system
if unknown external perturbations are absent while the
RFPT-based part guarantees precise trajectory track-
ing even in the early phase of the adaptive learning.

It was also shown that though the unknown ex-
ternal disturbances cause “parameter learning”, the
RFPT-based part is able to keep precise trajectory
tracking even in this case, too.
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Figure 6: The trajectory tracking under unknown dis-
turbances: with modified tuning without RFPT (up-
per chart), and modified tuning with RFPT (lower
chart)[q1: solid, q2: dashed, q3: dense dash lines]

Figure 7: The second time-derivatives of generalized
coordinate q3 with modified tuning and RFPT-based
adaptation (zoomed excerpt in the lower chart) [q̈3 (re-
alized): solid, q̈Des

3 (“desired”): dashed, q̈Req
3 (adap-

tively deformed): dense dash lines]
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